
CES – Chair for Embedded Systems

ces.itec.kit.edu

Low Power Design

Volker Wenzel on behalf of Prof. Dr. Jörg Henkel
Summer Term 2016

ces.itec.kit.edu2Volker Wenzel

Lecture Slides

ces.itec.kit.edu3Volker Wenzel

Overview Low Power Design Lecture

● Introduction and Energy/Power Sources (1)

● Energy/Power Sources(2): Solar Energy Harvesting

● Battery Modeling – Part 1

● Battery Modeling – Part 2

● Hardware power optimization and estimation – Part 1

● Hardware power optimization and estimation – Part 2

● Hardware power optimization and estimation – Part 3

● Low Power Software and Compiler

● Thermal Management – Part 1

● Thermal Management – Part 2

● Aging Mechanisms in integrated circuits

● Lab Meeting

ces.itec.kit.edu4Volker Wenzel

Overview for today

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation
phase

● Instruction scheduling

● Compiler-driven DVS

● Powertop Demo

ces.itec.kit.edu5Volker Wenzel

Overview

● Levels of abstraction

– system

– RTL

– gate

– transistor

● Challenges

– optimize (ie. minimize for low
power)

– design /co-design (synthesize,
compile, …)

– estimate and simulate

P2

memory ASIC

P1 P3

+

-

interconnect

battery

OS software

ces.itec.kit.edu6Volker Wenzel

HW

Low Power Software: Overview

(src.: A. Raghunathan, NEC)

Source

System
Software:

RTOS,
device
drivers,

...

Libraries

Target Memory Image

Target-independent
optimizations

Assembler/Linker

Target architecture
model

ISS, debugger

Co-simulator
Low-power
OS, middleware
-power management
-voltage/clock scheduling

Low-power compilers:
-transformations
-code generations
-memory layout
-code compression

Instruction-level
power model

Code generation

Power efficient
source code

ces.itec.kit.edu7Volker Wenzel

Instruction-level SW power modeling

● Energy consumed = f(Instruction sequence)

– The model considers

a) per-instruction costs

b) circuit state overhead costs

c) penalties for pipeline stalls and cache misses

● Program energy cost = ∑I (BaseI · NI) + ∑I,J (OvhdI,J · NI,J) + NCM · PenaltyCM
+ NStall · PenaltyStall

– NI number of times instruction I is executed

– BaseI Base energy cost of I (ignores stalls, cache misses)

– OvhdI,J Circuit state overhead when I,J are adjacent

– PenaltyCM Cache Miss Penalty

– PenaltyStall Pipelines Stall Penalty

● Circuit state overhead: depends on processor architecture

– constant value for 486DX2, Fujitsu SPARClite

– table for Fujitsu DSP due to greater variation src.: [Tiwari]
A. Raghunathan, NEC

ces.itec.kit.edu8Volker Wenzel

Power
Supply

CPU

Rest of the system

A

Current
Measurement
Setup

Current

Clk

Integration Period
 of Ampere Meter

Building instruction-level power models

● Characterize current drawn by
CPU for given instruction
sequence

● Simulation based methods
 Simulate program execution on HW

models of the CPU

● Physical measurement
 Digital Ampere meter
 Run programs in loops
 Get stable visual reading

● Processors investigated: Intel
486DX, Fujitsu SPARClite, Fujitsu
DSP src.: [Tiwari]

A. Raghunathan, NEC

ces.itec.kit.edu10Volker Wenzel

Base Cost PROGRAM =

 Base CostBLOCKi * InstancesBLOCKi

Estimated base current =

Base Cost PROGRAM / 72 = 369.0mA

Final estimated current = 369.0 + 15.0

 = 384.0mA

Measured current = 385.0mA

 Similar experiments in 486DX2 and
SPARClite accurate to within 3%

Block Instances

B1 1

B2 4

B3 1

jl L2 (taken) 3

 (not taken) 1

main:
mov bp, sp
sub sp, 4
mov dx, 0
mov word ptr -4[bp], 0
L2:
mov si, word ptr -4[bp]
add si, si
add si, si
mov bx, dx
mov cx, word ptr _a[si]
add bx, cx
mov si, word ptr _b[si]
add bx, si
mov dx, bx
mov di, word ptr -4[bp]
inc di
mov word ptr -4[bp], di
cmp di, 4
jl L2
L1:
mov word ptr _sum, dx
mov sp, bp
jmp main

1
1
1
2

1
1
1
1
1
1
1
1
1
1
1
1
1
3(1)

1
1
3

CyclesProgram

285.0
309.0
309.8
404.8

433.4
309.0
309.0
285.0
433.4
309.0
433.4
309.0
285.0
433.4
297.0
560.1
313.1
405.7(356.9)

521.7
285.0
403.8

Base Cost
 (mA)

B1

B2

B3

Estimation Example

src.: [Tiwari]

ces.itec.kit.edu11Volker Wenzel

Estimation flow: summary

(src:[Tiwari])

● Input: Assembly/Machine
Code

● Output: Energy cost of
final program

ces.itec.kit.edu12Volker Wenzel

register optimizations

Original code: lcc

Optimized code: hand-
generated

 9% current reduction
 24% running time reduction
 40.6% energy reduction
 33% for circle

push ebx
push esi
push edi
push ebp
mov ebp,esp
sub esp,24
mov edi,dword ptr 014H[ebp]

mov esi,1
mov ecx,esi
mov esi,edi
sar esi,cl
lea esi,1[esi]
mov dword ptr -20[ebp],esi

mov dword ptr -8[ebp],edi
L3:
mov edi,dword ptr -20[ebp]

cmp edi,1
jle L7
mov edi,dword ptr -20[ebp]

sub edi,1
mov dword ptr -20[ebp],edi

lea edi,[edi*4]
mov esi,dword ptr 018H[ebp]

add edi,esi
mov edi,dword ptr [edi]
mov dword ptr -12[ebp],edi

jmp L8
L7:
mov edi,dword ptr 018H[ebp]

mov esi,dword ptr -8[ebp]
lea esi,[esi*4]
add esi,edi
mov ebx,dword ptr [esi]
mov dword ptr -12[ebp],ebx

mov edi,dword ptr 4[edi]
mov dword ptr [esi],edi
mov edi,dword ptr -8[ebp]
sub edi,1
mov dword ptr -8[ebp],edi
cmp edi,1
jne L8
mov edi,dword ptr 018H[ebp]

mov esi,dword ptr -12[ebp]

mov dword ptr 4[edi],esi
jmp L2

Compiler Generated Code

push ebp
mov edi,dword ptr 08H[esp]

mov esi,edi
sar esi,1
inc esi
mov ebp,esi
mov ecx,edi
L3:
cmp ebp,1
jle L7
dec ebp
mov esi,dword ptr 0cH[esp]
mov edi,dword ptr[edi*4][esi]
mov ebx,edi
jmp L8
L7:
mov edi,dword ptr 0cH[esp]

mov esi,dword ptr 4[edi]
mov ebx,dword ptr [ecx*4][edi]
mov dword ptr [ecx*4][edi],esi

dec ecx
cmp ecx,1
jne L8
mov dword ptr 4[edi],ebx
jmp L2

Energy Efficient Code

Program sort circle
Version Original Final Original Final

Current (mA) 525.7 486.6 530.2 514.8
Ex. Time (ms) 11.02 7.07 7.18 4.93
Energy (10-6J) 19.12 11.35 12.56 8.37
Saving 40.60% 33.40%

Software power optimization: Example

heapsort example

src.: [Tiwari]
A. Raghunathan, NEC

ces.itec.kit.edu13Volker Wenzel

Overview

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation
phase
 Instruction scheduling
 Compiler-driven DVS

ces.itec.kit.edu14Volker Wenzel

A detailed instruction-level power model

(src:[Steinke])

CPU-intern CPU-extern

- distinction between instruction
dependency and data dependency
a) instruction-dependent cost inside
the CPU
b) data-dependent cost inside the
CPU
c) also considered but not discussed
here: power extern to the CPU

ces.itec.kit.edu15Volker Wenzel

A detailed instruction-level power model (cont’d)

Instruction-dependent costs
inside the CPU depend on:
- the internal buses carrying
the immediate value Imm
- the register numbers Reg,
values kept within the
registers RegVal
- and the instruction address
IAddr.

ECPU_instr

(src:[Steinke])

ces.itec.kit.edu16Volker Wenzel

A detailed instruction-level power model (cont’d)

ECPU_data

(src:[Steinke])

Data-dependent costs inside the CPU for n data accesses depend on
the data address DAddr, the Data itself and on the direction dir
(read/write)

ces.itec.kit.edu17Volker Wenzel

A detailed instruction-level power model (cont’d)

● Results and parameters

-parameters of ARM7TDMI energy model

(src:[Steinke])

CPU current depending on number of 1's on data bus

ces.itec.kit.edu18Volker Wenzel

Overview

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation
phase
 Instruction scheduling
 Compiler-driven DVS

ces.itec.kit.edu19Volker Wenzel

Low-power compilers

● Use instruction-level energy costs to guide code
generation

● Minimize memory accesses

– Utilize registers effectively

– Reduce context saving

● Processor-specific optimizations

– dual memory loads, instruction packing

● Optimize instruction scheduling to reduce activity in
specific parts of the system

– internal instruction-bus, processor-memory bus, instruction register and
register decoder

(src.: A. Raghunathan, NEC)

ces.itec.kit.edu20Volker Wenzel

Instruction scheduling for low power

● Traditional instruction scheduling strategies

– Reordering instructions in order to

● avoid pipeline stalls
● improve resource (register file, etc.) usage
● increase instruction level parallelism (ILP)
● ...

– main goal: increase performance

● Traditional steps for instruction scheduling

1) partition program into regions or basic blocks

2) build a control dependency graph (CDG) and data dependency graph

3) schedule instructions within resource constraints

ces.itec.kit.edu21Volker Wenzel

Instruction scheduling

1()j jD I I 

 Traditional:

- number of pipeline stalls between instruction I
j
 und I

j+1

Goal: minimize the number of all pipeline stalls PS within a basic block or region:

 Idea:
 Minimize switching those activities that depend on the sequence of

instructions i.e. context sensitive switching
Examples: loading instructions in registers, using same or different

operands, …
Switching activities may be measured by gate-level simulation running

an instruction of a sequence of instructions on an RTL model of the
processor architecture

 Idea: use the profiled switching activities as a cost function for
instruction scheduling through re-ordering

Assumption: there is leeway in data and control dependency graph
that allows re-ordering

Re-ordering may cost performance => prefer those re-orderings
that incur no or little penalty for performance

(src: Despain)PS=∑ D (I j , I j+1) , j=0,…, n−1

ces.itec.kit.edu22Volker Wenzel

Instruction Scheduling
- “Cold Scheduling” (Despain et al.) -

1

1

1 1

(,)

(,), 0,..., 1

1
cos (...)

j j

j j

k k

S I I

BS S I I j n

t w BS w BS
k



  

    

�

-Switching activity (# of transistor switches) in the processor
 when instruction I_j+1 is executed right after I_j

-Switching activity in a basic block

- cost function (k - # of basic blocks;
w_i weight function takes into
consideration dynamic execution
frequency (profiling)

- Problem:
- typically, instruction scheduling and register allocation are
 performed before assembly code using symbolic forms
- It may be difficult to obtain bit switching information
 from symbolic representation

a) jump/branch targets may not be known before scheduling and register allocation
b) sizes of basic blocks may change during scheduling and register allocation
c) binary representation of indexes to symbol table may not be available

 Phase problem of instruction scheduling and assembly
-If scheduling precedes assembly => may reduce potential of reducing bit switches
-If assembly precedes scheduling => flexibility of scheduling is limited

=> One solution: need to estimate binary representation of an instruction

BS=∑ S(I j , I j+1), j=0,…, n−1

ces.itec.kit.edu23Volker Wenzel

Instruction Scheduling
- “Cold Scheduling” (cont’d) -

shown:
- dependency graph and
three schedules of a code
sequences
- schedule info shows
pipeline stalls
- schedule has been done
without low power
scheduling

- for each schedule, the
normalized switching
activity has been
calculated
-Schedule I: is 1
-Schedule II is 1.05 (i.e.
plus 5%)
-Schedule III is 1.45
(plus 45%)

1BS  1.45BS 1.05BS 

1BS 

Conclusion: no clear correlation between low power (i.e. low
BS) and high performance (i.e. few pipeline stalls) => there is
hope that often energy/power savings can be achieved without
performance loss!

(src:Despain)

ces.itec.kit.edu24Volker Wenzel

Instruction Scheduling
- “Cold Scheduling” (cont’d) -

(src: Despain)

Energy savings

Performance
penalty

ces.itec.kit.edu25Volker Wenzel

Complexity and design space when
considering instruction sequences

● Q: Assume n instructions. How many instruction sequences?

● A: (n-1)! / 2

● Ex: 11 instructions (a medium-sized basic block) => ~16Mio sequences
Each sequences can potentially have a different power consumption

● In practice: it is less since there are precedence constraints

precedence constraints among
instructions 1, 2, 3, 4, 5, 6

ces.itec.kit.edu26Volker Wenzel

An efficient approach to the
instruction scheduling problem

power dissipation table:
When an instruction in
leftmost column is
followed by instruction
in top row, then the given
power consumption
applies

control dependency
graph:
Gives dependency
constraints
Ex 1: before ‘4’, ’2','1’
needs to execute;
Ex 2: ‘1’, ‘2’, ‘3’ can
be executed in any
order

Weighted strongly connected graph:
Contains all edges of CDG plus: edges between any two
nodes where precedence is not important (like 1<->2, 1<-
>3, 2<->3 etc.). This may be one or two edges subject to
whether costs are different. Each weight gives power cost
for repeated execution of the two connected instructions

Minimum Spanning
Tree (MST)

Using Simulated Annealing
for finding Hamiltonian Path
=>that is the energy efficient
instruction sequence

(src: chatterjee)

ces.itec.kit.edu27Volker Wenzel

An efficient approach to the
instruction scheduling problem (cont’d)

● Problem can be identified as the TSP problem => cannot be solved in polynomial time. In fact,
it is NP-hard => needs a heuristic like, for example, Simulated Annealing

● Some details on MST (Minimum Spanning Tree) and TSP with Simulated Annealing

1) Computing the minimum cost spanning
tree with Prim’s Algorithm (greedy)
Ex: when starting with vertex a, edges are
chosen in the order ab, af, ac, cd, dg, de

2) Computing MST is a constructive
method to find an initial path. MST can
be converted to a path using
Christofide’s Algorithm, for example.

3) The initial path is improved using
Simulated Annealing and 2-optimal
mechanisms:
-non-adjacent pair of edges are selected
and deleted => 2 paths
- recombine 2 path to 1 path (is unique)
according to optimization algorithm
(accept or reject the “move”) (src: chatterjee)

ces.itec.kit.edu28Volker Wenzel

An efficient approach to the
instruction scheduling problem (cont’d)

● Power saving results

(src: [chatterjee])

Power break down: Instruction Fetch, Id: Instruction
Decode, Exe: Execution, Mem: Memory access, Wb:
Wright back, RF: Register file, PR: Pipeline Register,
FU: Functional Units, DP: Other Data Paths

Scheduling Example for one BB of FIR Source

ces.itec.kit.edu29Volker Wenzel

Is optimizing SW for low power
equal to increasing its performance?

● Traditionally ‘yes’ because the following optimizations lead to both power/energy reduction and
performance increase
 Common sub-expression elimination
 Dead code elimination
 Memory hierarchy optimizations: loop tiling, keeping data on-chip instead of off-chip, …

● BUT: there are fundamental differences in metrics/models used for low power/energy and
performance
 Ex 1: critical path is often used for performance constraints. When modifying the off-critical

path in that case, performance is generally not affected; may instead lead to a decrease of the
critical path;

power/energy, on the other hand, are affected! Note any activity on or off the critical path will
contribute to power/energy consumption.

 Ex 2: moving loop invariant code:
 Assumption: - code is loop invariant;

 Case 1: on scalar machine performance optimization will move

 code out of the loop
 Case 2: on a VLIW leaving code in may increase performance

 if there are empty slots. Then, critical path may be reduced.

 But: power goes up since ten times executed

 Ex 3: speculative computation

(s
rc

: [
K

er
m

er
])

ces.itec.kit.edu30Volker Wenzel

Overview

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation
phase
 Instruction scheduling
 Compiler-driven DVS

ces.itec.kit.edu31Volker Wenzel

Some DVS basics

● DVS – Dynamic Voltage Scaling (the most effective method for power
savings due to quadratic relationship between power and supply
voltage
 DVS comes at the cost of performance degradation. Idea: deploy DVS

such that it does not incur a penalty
 An effective DVS strategy:

determine intelligently when to adjust the voltage setting (i.e. find the
best ‘scaling points’)

Where to adjust to i.e. which voltage setting to choose (i.e. ‘scaling
factors’)

 Overhead:
Switching to and from new voltage setting costs time and energy (=>

may reduce or eliminate potential savings)
 Hundreds of micro-seconds i.e. tens of thousands of instructions!
 (i.e. not even cache misses may be used to perform the transition)

 Considered here: intra-task DVS: i.e. scaling points may be in the middle
of the task execution (in contrast to inter-task DVS)
Sub-categories:

 1) interval-based DVS: fixed-length time intervals rely solely on state of the
system and trace history. Scaling points determined online or offline

 2) checkpoint-based DVS: scaling points are determined offline, scaling
factors are determined online. Scaling points are placed at selected
branches to exploit the slacks due to run-time variations

ces.itec.kit.edu32Volker Wenzel

Compiler-directed DVS

(src: [Kremer03])

Compiler-directed DVS problem:
Given a program P, find a region R and a
frequency f such that, if region R is executed at
frequency f and the rest of the program P − R is
executed at the peak frequency f

max
, the total

execution time plus the switching overhead T
trans

·2·N(R) is increased no more than r percent of
the original execution time T(P, f

max
), while the

total energy usage is minimized.

Compiler-directed DVS problem:
Given a program P, find a region R and a
frequency f such that, if region R is executed at
frequency f and the rest of the program P − R is
executed at the peak frequency f

max
, the total

execution time plus the switching overhead T
trans

·2·N(R) is increased no more than r percent of
the original execution time T(P, f

max
), while the

total energy usage is minimized.

with

T(R, f) - total execution time of
region R running at
frequency f

N(R) - # of times region
R is executed,

P
f
 - power consumption of the

system at frequency f

T
trans

, P
trans

 - single switching

overhead in terms of
performance, power, respectively.

r - specified by user

-> specify input behavior (kept in table)

-> modeling underlying machine

(src: [Kermer03])

ces.itec.kit.edu33Volker Wenzel

Compiler-directed
DVS (cont’d)

Additional constraint:
It needs to be made sure that region R
is sufficiently large such that exec time
is larger than a DVS call: ρ - compiler-directive

Steps of compiler-directed DVS:
1) instrumenting: the input program at selected
 program locations
2) profiling: the instrumented code is executed,
 filling a subset of entries in tables T(R, f) and
 N(R)
3) rest of table entries are derived (using call
 graphs etc.); based on inter-procedural
 analysis -> analysis is faster than profiling
4) the minimization problem is solved by
 enumerating all possible regions and
 frequencies.
5) the corresponding DVS system calls are
 inserted at the boundaries of the selected
 region.

(src: [Kremer03])

ces.itec.kit.edu34Volker Wenzel

Compiler-directed
DVS (cont’d)

- assumptions: - only two CPU frequencies f_max, f_min
 - C call sites
 - L loop nest
- First all N(R

i
), T(R

i
, f) are profiled for the basic regions

- Combined regions: one entry point, one exit point => all top level
statements are executed same # of times
- example for combined regions: if(L4, L5), seq(C2, C3)
-not allowed: seq(C1, C2), seq(C3, L4), …
- C1, C3 are the only call points of function foo
 => (C3 accordingly)

Example

Profiled dataControl flow between
basic regions

Remarks:
The profile-driven approach gives
results that are not portable but it
captures properties that may not be
captured using a compile-time
prediction model

(src: [Kremer03])

ces.itec.kit.edu35Volker Wenzel

Compiler-directed
DVS (cont’d)

● Results and experimental setup

Compilation time [s]

input parameter for
 DVS algorithm

Experimental setup

 Results:
 Power savings: 0%-28%
 Performance penalty: 0%-4.7%

(src: [Kremer03])

ces.itec.kit.edu36Volker Wenzel

Conclusion

● Software power estimation is possible and necessary
 It represents a high level of abstraction and therefore it is faster than

estimating power consumption of the underlying hardware circuitry

● Compiler may include optimization for low power
 Instruction scheduling
 Intra-procedural DVS

● Optimizing for low power and high performance are two
distinct tasks!

ces.itec.kit.edu37Volker Wenzel

Powertop Demo

(src.:[Heise])

ces.itec.kit.edu38Volker Wenzel

Powertop Demo

● open source power analysis tool

● diagnose issues related to

– power consumption

– power management

● interactive mode for experimentation

● „tuning“ possible from within powertop

(src.: [Powertop])

ces.itec.kit.edu39Volker Wenzel

Sources

[Steinke] Stefan Steinke, Markus Knauer, Lars Wehmeyer, Peter Marwedel, “An Accurate and Fine Grain
Instruction-Level Energy Model Supporting Software Optimizations”, PATMOS 2001.

[Kremer03] Chung-Hsing Hsu, U. Kremer, "The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction", ACM Conference on Programming Language Design and
Implementation, pp. 38-48, 2003.

[A. Raghunathan, NEC] Tutorials on low power held at various CAD conferences.

[Despain] Ching-Long Su and Chi-Ying Tsui and Alvin M. Despain, "Low Power Architecture Design and
Compilation Techniques for High-Performance Processors", In CompCon’94 Digest, pp.489-498,
February 1994.

[Chatterjee] Kyu-won Choi, Abhijit Chatterjee, "Efficient Instruction-Level Optimization Methodology for
Low-Power Embedded Systems", IEEE Proceedings of the 14th international symposium on Systems
synthesis (ISSS '01), Efficient Instruction-Level Optimization Methodology for Low-Power Embedded
Systems, pp. 147-152, 2001.

[Tiwari] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step toward
software power minimization,” IEEE Trans.VLSI Syst., vol. 2, pp. 437–445, Dec. 1994.

[Powertop] Accardi, C and Yates, A “Powertop User's Guide”,
https://01.org/sites/default/files/page/powertop_users_guide_201412.pdf

[Heise] http://www.heise.de/open/artikel/Powertop-2-0-Strom-sparen-unter-Linux-1167455.html

