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Overview Low Power Design Lecture ..\\.J(IT

Karlsruhe Institute of Technology

 Introduction and Energy/Power Sources (1)

« Energy/Power Sources(2): Solar Energy Harvesting

e Battery Modeling — Part 1

« Battery Modeling — Part 2

« Hardware power optimization and estimation — Part 1
 Hardware power optimization and estimation — Part 2
« Hardware power optimization and estimation — Part 3
 Low Power Software and Compiler

 Thermal Management — Part 1

 Thermal Management — Part 2

« Aging Mechanisms in integrated circuits

« Lab Meeting

[
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Overview for today AIAT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

* Software power analysis/measurement
* Software power estimation models

* Optimizing software for low power through compilation
phase

* |nstruction scheduling
* Compiler-driven DVS

* Powertop Demo

[
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Overview ﬂ(“.

Karlsruhe Institute of Technology

 Levels of abstraction

- system interconnect
- RTL
- gate

— transistor

 Challenges

- optimize (ie. minimize for low
power)

- design /co-design (synthesize,
compile, ...) O] software

- estimate and simulate

[
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Karlsruhe Instit f

Low Power Software: Overview
- " Source Low-power compilers:
- -transformations
. Power efficient } -code generations
source code -memory layout
Target-independent -code compression
system optimizations o
' Software: Target architecture
~ RTOS, e model
device . Code generation /
. drivers, e meecmememsmemmmaa- -
Instruction-level
o power model
" Libraries B Assembler/Linker

Low-power

OS, middleware

-power management
-voltage/clock scheduling

Volker Wenzel
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Target Memory Image
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Co-simulator

P

HW

(src.: A. Raghunathan, NEC)
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Instruction-level SW power modeling ..\g(“.

Karlsruhe Institute of Technology

« Energy consumed = f(Instruction sequence)

-  The model considers

a) per-instruction costs
b) circuit state overhead costs
c) penalties for pipeline stalls and cache misses

« Program energy cost = ), (Base, - N)) + >, (Ovhd,, - N, ;) + N, - Penaltygy
+ Ngiai - Penaltygy,
- N, number of times instruction | is executed
- Base, Base energy cost of | (ignores stalls, cache misses)
- Ovhd,;, Circuit state overhead when |,J are adjacent
- Penalty,, Cache Miss Penalty
- Penaltyg,, Pipelines Stall Penalty

« Circuit state overhead: depends on processor architecture
- constant value for 486DX2, Fujitsu SPARCIite

- table for Fujitsu DSP due to greater variation src.: [Tiwari]

A. Raghunathan, NEC
[
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itute of Technology

Building instruction-level power models QAT
A ~ Karlsruhe Institute of T

* Characterize current drawn by
CPU for given instruction
sequence

* Simulation based methods
Simulate program execution on HW

Integration Period

models of the CPU of Ampere Meter
* Physical measurement 4 )
Digital Ampere meter Rest of the system
i Power
Run programs in loops Supply
Get stable visual reading
_ _ CPU
* Processors investigated: Intel current
" . " urren
486DX, FUJItSU SPARCllte, FUJltSU Measurement /
Setup
DSP -@- src.: [Tiwari]
A. Raghunathan, NEC

[
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Estimation Example

AT

Karlsruhe Institute of Technology

Program Base Cost Cycles
main: (mA)
mov bp, sp 285.0 1
Bl sub sp,4 309.0 1
mov dx, 0 309.8 1
mov word ptr -4[bp], 0 404.8 2
L2:
mov si, word ptr -4[bp] 433.4 1
add si, si 309.0 1
add si, si 309.0 1
mov bx, dx 285.0 1
mov cXx, word ptr _a[si] 433.4 1
add bx, cx 309.0 1
mov si, word ptr _b[si] 433.4 1
B2 add bx, si 309.0 1
mov dx, bx 285.0 1
mov di, word ptr -4[bp] 433.4 1
inc di 297.0 1
mov word ptr -4[bp], di 560.1 1
cmp di, 4 313.1 1
]IllLZ 405.7(356.9) 3(1)
mov word ptr _sum, dx 521.7 1
B3 Mmov sp, bp 285.0 1
Jmp main 403.8 3
Volker Wenzel src.: [Tiwar] 10

Block Instances

Bl 1

B2 4

B3 1

jl L2 (taken) 3
(not taken) 1

Base Cost procram =

> Base Costg ocki * Instancesg ocki

Estimated base current =
Base Cost procram/ 72 = 369.0mA

Final estimated current = 369.0 + 15.0
= 384.0mA
Measured current = 385.0mA
Similar experiments in 486DX2 and
SPARCIite accurate to withi %egu I

ces.ltec.



Estimation flow: summary

AT

Karlsruhe Institute of Technology

* |nput: Assembly/Machine
Code

* Output: Energy cost of
final program

Volker Wenzel

( Determination of

Basic Blocks
L Stall Analysis lf ST Ease Cost Tabie w
J
Basic Block Cosi
Estimation

e Hj

Global Program Cost
Estimation

Cache Panaly Est.
{Cache Simulation)

e

(src:[Tiwari])




Software power optimization: Example

AT

Karlsruhe Institute of Technology

Jregister optimizations

JOriginal code: lcc

JOptimized code: hand-

generated

9% current reduction

24% running time reduction

40.6% energy reduction
33% for circle

Compiler Generated Code
Energy Efficient Code

push
push
push
push
mov
sub
mov

mov
mov
mov
sar
lea
mov

mov
L3:
mov

cmp
jle
mov

sub
mowv

lea
mov

add

Program I

sort

I circle

mov

Version |Original

Final

| Original

525.7
11.02
19.12

Current (mA)
Ex. Time (ms)
Energy (10-6J)
Saving

486.6
7.07
11.35
40.60%

Final

mov

530.2
7.18
12.56

514.8
4.93
8.37

33.40%

jmp
L7:
mowv

mov
lea
add
mov
mov

Volker Wenzel

mov
mov

sub2

mov

ebx

esi

edi

ebp

ebp,esp

esp,24

edi ,dword ptr 014H[ebp]

esi,l

ecx,esi

esi,edi

esi,cl

esi,l[esi]

dword ptr -20[ebp], esi

dword ptr -8[ebp],edi
edi,dword ptr -20[ebp]

edi,l1
L7
edi,dword ptr -20[ebp]

edi,l
dword ptr -20[ebp],edi

edi, [edi*4]
esi,dword ptr 018H[ebp]

edi,esi
edi ,dword ptr [edi]
dword ptr -12[ebp],edi

L8
edi,dword ptr 018H[ebp]

esi,dword ptr -8[ebp]
esi, [esi*4]

esi,edi
ebx,dword
dword ptr

ptr [esi]
-12[ebp] ,ebx

edi ,dword
dword ptr
edi,dword
edi,1l

dword ptr

ptr 4[edi]
[esi] ,edi
ptr -8[ebp]

-8[ebp] ,edi

push
mov

mov
sar
inc
mov
mov
L3:

cmp
jle
dec
mov
mov
mov

jmp
L7:
mov

mov
mov
mov

dec
cmp
jne
mov
Jmp

ebp
edi,dword ptr 08H[esp]

esi,edi
esi,1
esi
ebp,esi
ecx,edi

ebp,1

L7

ebp
esi,dword
edi,dword

ebx,edi
L8

ptr OcH[esp]
ptr[edi*4] [esi]

edi,dword ptr OcH[esp]
esi,dword
ebx,dword
dword ptr

ptr 4[edi]
ptr [ecx*4] [edi]
[ecx*4] [edi] ,esi

ecx
ecx,1

L8

dword ptr
L2

4[edi] ,ebx

heapsort example

src.: [Tiwari]
A. Raghunathan, NEC

ces.itec.kit.edu



Overview -\g(“.

Karlsruhe Institute of Technology

* Software power estimation models

[
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A detailed instruction-level power model ﬂ(".

Karlsruhe Institute of Technology

CPU-intern CPU-extern

(src:[Steinke])

RISC processor

Data

- distinction between instruction
dependency and data dependency
a) instruction-dependent cost inside
the CPU Barrel
b) data-dependent cost inside the Shifeer

= Instruction
CPU . . Opcode Memory
c) also considered but not discussed ;

Multiplier
here: power extern to the CPU : e

& Control Logic

Register File 2o Memory

[
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AT

A detailed instruction-level power model (cont'd)

D ECPU_instr

m

————

I E ‘
IEc-pu_-iﬂ.Sh'l ==

b ——— =1

Instruction-dependent costs
inside the CPU depend on:

- the internal buses carrying
the immediate value Imm

- the register numbers Reg,
values kept within the
registers RegVal

- and the instruction address
IAddr.

Volker Wenzel

BaseC PU (Opcode;) +

Z(al cw(Immy ;) + B+ h(Immy_q 3, Imm; ;) +

j=1

t

Z(ag s« w(Regi k) + B2 x h(Regi—1 .k, Regix)) +

k=1

t

Z{ag xw(RegVal; 1) + B3+ h(RegVal;_1 1, RegVal; 1)) +

k=1

ay x w(lTAddr;) + B4 * h(ITAddr;_y, T Addr;) +

FUChange(Instr;_y, Instr; ))
(src:[Steinke])

[
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AT

A detailed instruction-level power model (cont'd)

D ECPU_data

(s

it = ) (aa x w(DAddr;) + Bs + h(DAddr;_y, DAddr;) +

| N p—

i=1

ag.dir * W(Data;) + Be qir * h(Data;_1q, Da.ta.t-})

(src:[Steinke])

Data-dependent costs inside the CPU for n data accesses depend on
the data address DAddr, the Data itself and on the direction dir
(read/write)

[
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A detailed instruction-level power model (cont’d)

* Results and parameters

52,0

current (mA)
o
0
(=]

47,0

46.0 Read

45,0 = :

44,0 r T T T T T
0 2 8 10 12 14 16

number of 1

18

AT

Karlsruhe Institute of Technology

parameter| energy (pJ) parameter| energy (pJ)
Read  Write Read  Write
g, Ors n.a. 48.0)| 34, 35 na. 2199
o6 11.0 26.4{(3s 55 2241
a7, Qg n.a. -19.2|| 37, Bo n.a. 138.9
og -115.3 n.a.|| s 3.0 n.a.
10 -115.3 -60.4|| 510 574 22.8

-parameters of ARM7TDMI energy model

CPU current depending on number of 1's on data bus

Volker Wenzel

17

(src:[Steinke])
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Overview ..\X‘(IT

Karlsruhe Institute of Technology

* Optimizing software for low power through compilation

phase
Instruction scheduling

[
Volker Wenzel 18 ces.itec.kit.edu



Low-power compilers ..\\.J(IT

itute of Technology

« Use instruction-level energy costs to guide code
generation
 Minimize memory accesses
- Utilize registers effectively
- Reduce context saving
* Processor-specific optimizations

- dual memory loads, instruction packing

» Optimize instruction scheduling to reduce activity in
specific parts of the system

- Internal instruction-bus, processor-memory bus, instruction register and
register decoder

(src.: A. Raghunathan, NEC)
[
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Instruction scheduling for low power ..\X‘(IT

Karlsruhe Institute of Technology

e Traditional instruction scheduling strategies

— Reordering instructions in order to

« avoid pipeline stalls
* improve resource (register file, etc.) usage
* increase instruction level parallelism (ILP)

- main goal: increase performance
 Traditional steps for instruction scheduling

1) partition program into regions or basic blocks
2) build a control dependency graph (CDG) and data dependency graph

3) schedule instructions within resource constraints

[
Volker Wenzel 20 ces.itec.kit.edu



Instruction scheduling _\g(“.

Karlsruhe Institute of Technology

d Traditional:
D1 j[ j +1) - number of pipeline stalls between instruction LundI,,

Goal: minimize the number of all pipeline stalls PS within a basic block or region:
PS:Z D(Ij’Ij+1>Jj:0"“Jn_1 (src: Despain)

U Idea:

Minimize switching those activities that depend on the sequence of
instructions i.e. context sensitive switching

Examples: loading instructions in registers, using same or different
operands, ...

Switching activities may be measured by gate-level simulation running
an instruction of a sequence of instructions on an RTL model of the
processor architecture

|dea: use the profiled switching activities as a cost function for
instruction scheduling through re-ordering

Assumption: there is leeway in data and control dependency graph
that allows re-ordering

Re-ordering may cost performance => prefer those re-orderings

that incur no or little penalty for performance 3

Volker Wenzel 21 ces.itec.kit.edu



Instruction Scheduling
- “Cold Scheduling” (Despain et al.) - ﬂ(“.

-Switching activity (# of transistor switches) in the processor
\) (1 wE ) when instruction I j+1 is executed right after I
VRS _J g _J

BS= Z S (I‘,-, Ij+1)’ j=0,...,n—1 -Switching activity in a basic block

- cost function (k - # of basic blocks;
w_1 weight function takes into
consideration dynamic execution
frequency (profiling)

cos? :%(w1 *BS, +...+w,*BS))

- Problem:
- typically, instruction scheduling and register allocation are
performed before assembly code using symbolic forms
- It may be difficult to obtain bit switching information
from symbolic representation
a) jJump/branch targets may not be known before scheduling and register allocation
b) sizes of basic blocks may change during scheduling and register allocation
c¢) binary representation of indexes to symbol table may not be available
= Phase problem of instruction scheduling and assembly
-If scheduling precedes assembly => may reduce potential of reducing bit switches
-If assembly precedes scheduling => flexibility of scheduling 1s limited

=> One solution: need to estimate binary representation of an instruction -
Volker Wenzel 22 ces.itec.kit.edu



Instruction Scheduling
- “Cold Scheduling” (cont'd) -

AT

Karlsruhe Institute of Technology

End

(src:Despain)

(a) data dependencies graph

label(l{move/4,7)).
mov(e,t0).
umax(b,c,e).
addi(e.4.¢).
pushd(t0/cp.e,2).
1di(-1,11).

0 mov{r(3),:(2)).
st(r(0),e+ -6).

N=T - I I WSV O

[ Pipelinestalls=1 |

std(r(2)/r(1),e+ -4).
add28((0),11,r(0}).

BS =1
%D(1,2) =0
%D(2,3) =0
%D(3,4)=0
%D(4,6) =0
%D(6,7)=0
%D(7,8)=0
%D(8,10) = 0
%D(10,9)=0
%D9,5)=1

(b) Instruction sequence I

label(l{move/d,7)).

6 1di(-1,t1).

1 mov(e,t0).

2 umax(b,e.e).

3 addi(ed.e).

8 add28(r(0),11,5(0)).
4 pushd(t0/cp,e,2).

7 std(r(2)/r(1),e+ -4).
9 sti(r(0),e+ -6).

5 st(r(3).e+ -5).

10 mov(x(3),r(2)).
|_Pipeline stalls =3 |

BS =1.05

%D(6,1) =0
%D(1,2) =0
%DE2,3) =0
%D(3,8) =0
%D(B,4) =0
%DED =1
%D7,9) =1
%D(,5) =1
%D(5,10)= 0
%D(10,11)=0

(c) Instruction sequence i1

label(l(move/4,7)).
mov(e,t0).
umax(b,e.e).
1di(-1,t1).
addi(e,4,¢).
pushd(tO/cp,e,2).
si(r(3),e+ -5).
add28(r(0),11,r(0)).
std(r(2)/r(1),e+ -4).

0 mov(r(3),r(2)).

1 1d(e-4, 13).

e =] 00 LA B W ON NS

| Pipeline stalls =1 |

BS =145
%D(1,2}=0
%D(2,6)=0
%D(6,3}) =0
%D(3,4)=0
%D(4,5) =1
%D(5,8)=0
%D, =0
%D(7,10)=0
%D(10,11)=0
%D(11,9)=0

(d) Instruction sequence 111

Conclusion: no clear correlation between low power (i.e. low
BS) and high performance (i.e. few pipeline stalls) => there is
hope that often energy/power savings can be achieved without

voRgFiRgnee loss!

23

shown:

- dependency graph and
three schedules of a code
sequences

- schedule info shows
pipeline stalls

- schedule has been done
without low power
scheduling

- for each schedule, the
normalized switching
activity has been
calculated

-Schedule I: is 1
-Schedule II 1s 1.05 (i.c.
plus 5%)

-Schedule III 1s 1.45
(plus 45%)

ces.itec.kit.edu



Karlsruhe Institute of Technology

Instruction Scheduling
- “Cold Scheduling” (cont'd) - "\g(“.

||
nreverse Energy savings
gsort
query
ircuit
Cold Scheduling :;“m
INPUT: DAG representation and bit switching table SEIBTOtP
OUTPUT: A scheduled instruction stream zebra .2
0. SetreadylistRLtobe (} ] boyer
Set the last SCth“lﬁd instruction 1.SI = NOP browse beduced
1. Remove ready instructions from DAG and chat it switching(%)
add these ready instruction into RL.

s
2. ForeachinstrucuonIin RL,

find S(LSLI).

il
3. Remove an instruction I with the smallest S(LSLI) from RL.
The removed instruction becomes the current LSL. nHEvEe Performance
Worite out LSL gsort penalty
4. IF there is any instruction yet to be scheduled, qj.lcry
THEN go to step 1, circuit
ELSE retumn. semigroup
Figure 10 Cold Scheduling Algorithm ztbra
boyer
. browse
(src: Despain)
chat

Volker Wenzel 24



Complexity and design space when \\‘(IT
considering instruction sequences e ety

Q: Assume n instructions. How many instruction sequences?
A: (n-1)!/2

* Ex: 11 instructions (a medium-sized basic block) => ~16Mio sequences
Each sequences can potentially have a different power consumption

* In practice: it is less since there are precedence constraints

O @ G
@
©

precedence constraints among
instructions 1, 2, 3,4, 5, 6

[
Volker Wenzel 25 ces.itec.kit.edu



An efficient approach to the
instruction scheduling problem ﬂ(".

power dissipation table: control dependency
When an instruction in o @ e graph:

leftmost column is Gives dependency
followed by instruction constraints

in top row, then the given @ 9 Ex 1: before ‘4", '2''1’
power consumption needs to execute;
applies Ex 2: ‘1", 2", '3’ can
@ be executed in any
order

(src: chatterjee)

Using Simulated Annealing Minimum Spanning Weighted strongly connected graph:

for finding Hamiltonian Path Tree (MST) Contains all edges of CDG plus: edges between any two
=>that is the energy efficient nodes where precedence is not important (like 1<->2, 1<-
instruction sequence >3, 2<->3 etc.). This may be one or two edges subject to

whether costs are different. Each weight gives power cost

for repeated execution of the two connected instructiopg
Volker Wenzel 26 ces.itec.kit.edu



An efficient approach to the
iInstruction scheduling problem (cont’'d)

AT

Karlsruhe Institute of Technology

* Problem can be identified as the TSP problem => cannot be solved in polynomial time. In fact,
it is NP-hard => needs a heuiristic like, for example, Simulated Annealing

* Some details on MST (Minimum Spanning Tree) and TSP with Simulated Annealing

20 35 //'

(2) SCG “o¢

(src: chatterjee)

Volker Wenzel

27

1) Computing the minimum cost spanning
tree with Prim’s Algorithm (greedy)

Ex: when starting with vertex a, edges are
chosen in the order ab, af, ac, cd, dg, de

2) Computing MST is a constructive
method to find an initial path. MST can
be converted to a path using
Christofide’s Algorithm, for example.

3) The initial path is improved using

Simulated Annealing and 2-optimal

mechanisms:

-non-adjacent pair of edges are selected

and deleted => 2 paths

- recombine 2 path to 1 path (is unique)

according to optimization algorithm

(accept or reject the “move”)
ces.itec.kit.edu



An efficient approach to the

Instruction scheduling problem (cont’'d)

AT

Karlsruhe Institute of Technology

* Power saving results

92:1w$2,228(5p)

9 :move$s, 54

9%:addad4.5fp 32

94:51152,53,2

w14 stage: 14221(14.16)

96:addus3, 52,54

99:1lws$4,218(5p)

97:addu52,53,96

98:1w$3,224(5fp)

100:50bu%3,53,54

105:1ws2,0(52)

101 :m ovesd, 53

102:s1153,54.2

103:addu$4,56p,32

104:addu$3.53,54

106:1ws3,0(53)

107:mult$2,53

109:1ws3,232(5p)

108:mfloS2

110:addu$2,53,52

111:5w52,232(54p)

t

No
Optimization

Total Power: 100436 (pF)
{ Total Cycle: 2900 )

If stage: 3123(3.11 %)

Exe stage: 43343(43.16)
Mem stage: 9060(9.02)
Wb stage: 30687(30.55)

Register file: 25846 (25.73 %)
Pipeline Register: 37372(37.21)
Function Units: 26497(26 38)
Other: 7431(7.42)

Total Power: 91885 (pF)
{ Total Cycle: 2790 )

If stage: 3102(3.38 %)
Id stage: 13045(14.20)
Exe stage: 30180(42.64)
Mem stage: 8596(9.36)
Wb stage: 27960(30.43)

Eegister file: 22832 (24.85 %)
Pipeline Register: 35797(38.96)
Function Units: 23285(25 34)
Other: 6800(7.40)

92:1w3s1,2218(5fp)

95:adduS54,5fp,32

93:move$s 54

94:31152,53,2

96:adduS3,521,54

97:addus2,33,96

98:1lwS3,224(5fp)

99:1ws4,228(5fp)

105:1ws2,0(52)

100::0bus2,53,54

101:move$4,53

102:51153,54,2

103:addus$4,5p.32

104:addu’3,53,54

106:1w53.0(53)

107:mule32,53

108 :m fla52

109:1wS3,232(5fp)

110:addu%2,53,52

111:5w32,232(54p)|

Power Reduction Efficiency =8.5%
[ (100436 — 91885)/100436 =0.085 ]

T

With
Optimization

Scheduling Example for one BB of FIR Source

Volker Wenzel

Power (pF)

Paower (pF)

28

(src: [chatterjee])

Fir

2 Bubble_Sort
Besdl
N o Optimization
[ With Optimization
40000 | eed
220
30000 4 —~
[y
L
& 3es8
2
20000 8
Jesdd
10000 4
1218
o+ 0 |
If ld Exe Mem Wh RF PR FU DP If I1d Exe Mem Wb RF PR FU DP
Quick_Sort Banary_Search
1.2e+8 6000
- W o Optmizstion
Optimization [ With Optimization
10et8 = With 5000 -|
Optimization
8.0e+ 4000 +
T
8.0e+ E 0
3
a
40e+8 2000 -
DetS 1000
oo : o |
If d Ex Mem Wb RF PR FU DP Ifi id BExe Mem Wb RF PR FU DP

Power break down: Instruction Fetch, Id: Instruction

Decode, Exe: Execution, Mem: Memory access, Wb:

Wright back, RF: Register file, PR: Pipeline Register,
FU: Functional Units, DP: Other Data Paths

ces.itec.kit.edu



Is optimizing SW for low power ﬂ(“.
equal to increasing its performance?

Traditionally ‘yes’ because the following optimizations lead to both power/energy reduction and
performance increase

Common sub-expression elimination

Dead code elimination

Memory hierarchy optimizations: loop tiling, keeping data on-chip instead of off-chip, ...
BUT: there are fundamental differences in metrics/models used for low power/energy and
performance

Ex 1: critical path is often used for performance constraints. When modifying the off-critical
path in that case, performance is generally not affected; may instead lead to a decrease of the

critical path;
power/energy, on the other hand, are affected! Note any activity on or off the critical path will
contribute to power/energy consumption. for (i=0; i<10; i++) {
Ex 2: moving loop invariant code: la=Dh = 2}
. : : : cli] = d[i] + 2.0;
Assumption: - code is loop invariant; )

Case 1: on scalar machine performance optimization will move

code out of the loop

Case 2: on a VLIW leaving code in may increase performance [a=b * 2]

if there are empty slots. Then, critical path may be reduced. for (i=0; i<10; i++) {

cli] = d[i] + 2.0;

But: power goes up since ten times executed
Ex 3: speculative computation

}

Volker Wenzel 29 ces.itec.kit.edu
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Overview ..\X‘(IT

Karlsruhe Institute of Technology

* Optimizing software for low power through compilation
phase

Compiler-driven DVS

[
Volker Wenzel 30 ces.itec.kit.edu



ST

Some DVS basics

savings due to quadra

— Dynamic Voltagt_e Scaling (the most effective method for power
ic relationship between power and supply

voltage

Volker Wenzel

DVS comes at the cost of performance degradation. Idea: deploy DVS
such that it does not incur a penalty
An effective DVS strategy:
determine intelligently when to adjust the voltage setting (i.e. find the
best ‘scaling points’)
Where to adjust to i.e. which voltage setting to choose (i.e. ‘scaling
factors’)

Overhead:
Switching to and from new voltage setting costs time and energy (=>
may reduce or eliminate potential savings)
Hundreds of micro-seconds i.e. tens of thousands of instructions!
(i.e. not even cache misses may be used to perform the transition)

Considered here: intra-task DVS: i.e. scalinq(points may be in the middle
of the task execution (in contrast to inter-task DVS)

Sub-categories:
1) interval-based DVS: fixed-length time intervals rely solely on state of the
system and trace history. Scaling points determined online or offline

2) checkpoint-based DVS: scaling points are determined offline, scaling
factors are determined online. Scaling points are placed at selected
branches to exploit the slacks due to run-time variations
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Karlsruhe Institute of Technology

: T(R, f) - total execution time of

. | ! region R running at
ming. ¢ Pr-T(R,f)+ Py,,,. - T(P— R, frax) I frequency f

|

|

|

|

|

|

+Pt?‘a.n5 % 2 z I\'T(R) : :
N(R) # of times region !

|

|

| R is executed,
: |
with T(R,f) + T(P = R, frmaz)+ > specify, input behavior (kept i table) _!
{5 W— I\"T(R) = (1 + ".-") ; T(P fma:c) _________________________ |

P. - power consumption of the

(src: [Kremer03])

' |
i |
- - | system at frequency f :
Compiler-directed DVS problem: | !
Given a program P, find a region R and a E TP, - singleswitching |
frequency f such that, if region R is executed at | overhead in terms of :
frequency f and the rest of the program P - R is | REHBHNARCE, ROWES, Fespeetively. |
executed at the peak frequency f__, the total b :
execution time plus the switching overhead T, r - specified by user
2 N(R) is increased no more than r percent of (src: [Kermer03])
the original execution time T(P, f__ ), while the
. - - - -
total energy usage is minimized. ces iteckitedu 5




Compiler-directed

AT

Karlsruhe Institute of Technology

DVS (cont'd)

Additional constraint:

It needs to be made sure that region R
is sufficiently large such that exec time
is larger than a DVS call:

original DVS’ed
L program C prograim
SUIF2 passes SUIF2 passes
I F 3
\ profile
instrumented

Y

C program machine

(src: [Kremer03])
Volker Wenzel

T(R* f'm-ﬂ-l‘)/T(P? f??ltl-l‘) 2 p
p - compiler-directive

Steps of compiler-directed DVS:

1) instrumenting: the input program at selected
program locations

2) profiling: the instrumented code is executed,
filling a subset of entries in tables T(R, ) and
N(R)

3) rest of table entries are derived (using call
graphs etc.); based on inter-procedural
analysis -> analysis is faster than profiling

4) the minimization problem is solved by
enumerating all possible regions and
frequencies.

5) the corresponding DVS system calls are
inserted at the boundaries of the selected
region.
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DVS (Cont’d) Karlsruhe Institute of Technology
Example - assumptions: - only two CPU frequencies f_max, f_min
- C call sites
ENTRY - L loop nest

- First all N(R), T(R,, f) are profiled for the basic regions

- Combined regions: one entry point, one exit point => all top level
statements are executed same # of times
- example for combined regions: if(L4, L5), seq(C2, C3)

'HEXIT -not allowed: seq(C1, C2), seq(C3, L4), ...
~  -C1, C3 are the only call points of function foo
oty (CL F) = T(fo0, ) 1/(1 + 10) (C3 accordingly)
T( R, f ) Remarks:
R | N(R) [ fma. Frest The profile-driven approach gives
il I ”E)am ﬂg’ a results that are not portable but it
captures properties that may not be

C2 10 10 12 captured using a compile-time
9 10 0 0 prediction model

L5 L4 8 8 12
L5 2 2 4

Control flow between Profiled data

basic regions -
Volker Wenzel 34 ces.itec.kit.edu



Compiler-directed

DVS (cont'd)

* Results and experimental setup

Profiling
Computer

AC Adapter

Digital
Power Meter

Wall

Power Outlet

/

(src: [Kremer03])

Laptop

(battery removed)

Experimental setup

J Results:

Power savings: 0%-28%
Performance penalty: 0%-4.7%

Volker Wenzel
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| parameter | value |

AT

Karlsruhe Institute of Technology

T(R, f) profiled
N(R) profiled | .
Iz V2 7 mput parameter for

! i DVS algorithm

Tf rans 20 HS

Ptrans 0 \Y

r 5%
P 20%
total instru-
compilation | mentation | profiling | selection
time phase phase phase

swim 34 7 8 19
tomecatv 173 4 158 11
hydro2d 340 44 173 123
suZcor 403 37 257 109
applu 284 83 13 188
apsi 1264 157 40 1067
mgrid 190 10 152 28
waveh 544 151 48 345
turb3d 1839 39 268 1532
fpppp 1628 82 11 1535

Compilation time [s]

ces.itec.kit.edu



Conclusion .\\J(IT

itute of Technology

* Software power estimation is possible and necessary

It represents a high level of abstraction and therefore it is faster than
estimating power consumption of the underlying hardware circuitry

* Compiler may include optimization for low power
Instruction scheduling
Intra-procedural DVS

* Optimizing for low power and high performance are two
distinct tasks!

[
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Powertop Demo ﬂ(“.

Karlsruhe Institute of Technology

"= Terminal

Overview Idle stats cy stats Device stats

Summary: 128.1 wakeups/second, 16.6 GPU ops/second and @.0 VFS ops/sec

Usage Events/s Category Descripticn
100.0% Device Audio codec hwCoD@: IDT
100.0% Device Audioc codec hwCBD3: Intel
1.3 ms/s 62.8 Interrupt [42] 1815
5.6 ms/s 31.3 Process Jusr/bin/gnome-shell
3.4 ms/s 14.7 Process Jusr/bin/Xorg @ -br -verbose -
3.6 ms/s 8.8 Process gnome-termingl
470.8 ps/s 8.8 Timer tick_sched_timer
151.8 us/s 8.8 Timer hrtimer_wakeup
14.2 ms/s 2.0 Process powertop
66.3 us/s 2.0 Interrupt [3] net_rx(softirg)
88.1 us/s 1.8 Process [flush-7:5]
68.6 us/s 1.8 Process Jfusr/sbin/1ldpad -d
20.2 us/s 1.0 FProcess [flush-8:32]
16.0 ps/s 1.8 ko rk 1915 _gem_retire_work_handler
11.1 ps/s 1.0 kWork flush_to_ldisc
7.8 us/s 1.8 Timer sched_rt_period_timer
253.5 ps/s 0.80 Timer delayed work _timer fn
210.4 ps/s o. FProcess [migration/2]
209.7 ps/s o. Interrupt [1] timer{softirg)
194.5 ps/s 0 kWork do_dbs_timer
191.2 us/s o. Interrupt [2] RCU(softirg)
191.1 ps/s 0. Frocess [migration/@]

(src.:[Heise])

[
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Karlsruhe Institute of Technology

open source power analysis tool

diagnose issues related to

- power consumption

- power management

interactive mode for experimentation

,<uning” possible from within powertop

(src.: [Powertop])
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