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Overview Low Power Design Lecture

● Introduction and Energy/Power Sources (1)

● Energy/Power Sources(2): Solar Energy Harvesting

● Battery Modeling – Part 1

● Battery Modeling – Part 2

● Hardware power optimization and estimation – Part 1

● Hardware power optimization and estimation – Part 2

● Hardware power optimization and estimation – Part 3

● Low Power Software and Compiler

● Thermal Management – Part 1

● Thermal Management – Part 2

● Aging Mechanisms in integrated circuits

● Lab Meeting
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Overview for today

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation 
phase

● Instruction scheduling

● Compiler-driven DVS

● Powertop Demo
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Overview

● Levels of abstraction

– system

– RTL

– gate

– transistor

● Challenges

– optimize (ie. minimize for low 
power)

– design /co-design (synthesize, 
compile, …)

– estimate and simulate

P2

memory ASIC

P1 P3

+

-

interconnect

battery

OS software
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HW

Low Power Software: Overview

(src.: A. Raghunathan, NEC)

Source

System 
Software:

RTOS,
device 
drivers,

...

Libraries

Target Memory Image

Target-independent
optimizations

Assembler/Linker

Target architecture
model

ISS, debugger

Co-simulator
Low-power 
OS, middleware
-power management
-voltage/clock scheduling

Low-power compilers:
-transformations
-code generations
-memory layout
-code compression

Instruction-level 
power model

Code generation

Power efficient
source code



ces.itec.kit.edu7Volker Wenzel

Instruction-level SW power modeling

● Energy consumed = f(Instruction sequence)

– The model considers

a) per-instruction costs

b) circuit state overhead costs

c) penalties for pipeline stalls and cache misses

● Program energy cost = ∑I (BaseI · NI) + ∑I,J (OvhdI,J · NI,J) + NCM · PenaltyCM 
+ NStall · PenaltyStall

– NI number of times instruction I is executed

– BaseI Base energy cost of I (ignores stalls, cache misses)

– OvhdI,J Circuit state overhead when I,J are adjacent

– PenaltyCM Cache Miss Penalty

– PenaltyStall Pipelines Stall Penalty

● Circuit state overhead: depends on processor architecture

– constant value for 486DX2, Fujitsu SPARClite

– table for Fujitsu DSP due to greater variation src.: [Tiwari]
A. Raghunathan, NEC
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Power
Supply

CPU

Rest of the system

A

Current 
Measurement
Setup

Current

Clk

Integration Period
 of Ampere Meter

Building instruction-level power models

● Characterize current drawn by 
CPU for given instruction 
sequence

● Simulation based methods
 Simulate program execution on HW 

models of the CPU

● Physical measurement
 Digital Ampere meter
 Run programs in loops
 Get stable visual reading

● Processors investigated: Intel 
486DX, Fujitsu SPARClite, Fujitsu 
DSP src.: [Tiwari]

A. Raghunathan, NEC
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Base Cost PROGRAM = 

  Base CostBLOCKi  *  InstancesBLOCKi

Estimated base current = 

Base Cost PROGRAM / 72 = 369.0mA

Final estimated current = 369.0 + 15.0

                                          = 384.0mA

Measured current  = 385.0mA

 Similar experiments in 486DX2 and 
SPARClite accurate to within 3%

Block           Instances

B1                        1

B2                        4

B3                        1

jl L2 (taken)         3

  (not taken)        1

main:
mov bp, sp
sub sp, 4
mov dx, 0
mov word ptr -4[bp], 0
L2:
mov si, word ptr -4[bp]
add si, si
add si, si
mov bx, dx
mov cx, word ptr _a[si]
add bx, cx
mov si, word ptr  _b[si]
add bx, si
mov dx, bx
mov di, word ptr -4[bp]
inc di
mov word ptr -4[bp], di
cmp di, 4
jl L2
L1:
mov word ptr _sum, dx
mov sp, bp
jmp main

1
1
1
2

1
1
1
1
1
1
1
1
1
1
1
1
1
3(1)

1
1
3

CyclesProgram

285.0 
309.0
309.8
404.8

433.4
309.0
309.0
285.0
433.4
309.0
433.4
309.0
285.0
433.4
297.0
560.1
313.1
405.7(356.9)

521.7
285.0
403.8

Base Cost
     (mA)

B1

B2

B3

Estimation Example

src.: [Tiwari]
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Estimation flow: summary

(src:[Tiwari])

● Input: Assembly/Machine 
Code

● Output: Energy cost of 
final program
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register optimizations

Original code: lcc

Optimized code: hand-
generated

  9% current reduction
  24% running time reduction
  40.6% energy reduction
  33% for circle

push  ebx    
push  esi    
push  edi    
push  ebp    
mov   ebp,esp    
sub   esp,24    
mov   edi,dword ptr 014H[ebp]  
  
mov   esi,1    
mov   ecx,esi    
mov   esi,edi    
sar   esi,cl    
lea   esi,1[esi]    
mov   dword ptr -20[ebp],esi   
 
mov   dword ptr -8[ebp],edi    
L3: 
mov   edi,dword ptr -20[ebp]   
 
cmp   edi,1    
jle   L7    
mov   edi,dword ptr -20[ebp]   
 
sub   edi,1    
mov   dword ptr -20[ebp],edi   
 
lea   edi,[edi*4]    
mov   esi,dword ptr 018H[ebp]  
  
add   edi,esi    
mov   edi,dword ptr [edi]    
mov   dword ptr -12[ebp],edi   
 
jmp   L8    
L7: 
mov   edi,dword ptr 018H[ebp]  
  
mov   esi,dword ptr -8[ebp]    
lea   esi,[esi*4]    
add   esi,edi    
mov   ebx,dword ptr [esi]    
mov   dword ptr -12[ebp],ebx   
 
mov   edi,dword ptr 4[edi]    
mov   dword ptr [esi],edi    
mov   edi,dword ptr -8[ebp]    
sub   edi,1    
mov   dword ptr -8[ebp],edi    
cmp   edi,1    
jne   L8    
mov   edi,dword ptr 018H[ebp]  
  
mov   esi,dword ptr -12[ebp]   
 
mov   dword ptr 4[edi],esi    
jmp   L2    

Compiler Generated Code

push  ebp       
mov   edi,dword ptr 08H[esp]     
  
mov   esi,edi       
sar   esi,1       
inc   esi       
mov   ebp,esi       
mov   ecx,edi       
L3: 
cmp   ebp,1       
jle   L7       
dec   ebp       
mov   esi,dword ptr 0cH[esp]
mov   edi,dword ptr[edi*4][esi]
mov   ebx,edi       
jmp   L8       
L7: 
mov   edi,dword ptr 0cH[esp]     
  
mov   esi,dword ptr 4[edi]       
mov   ebx,dword ptr [ecx*4][edi] 
mov   dword ptr [ecx*4][edi],esi 
      
dec   ecx       
cmp   ecx,1       
jne   L8       
mov   dword ptr 4[edi],ebx       
jmp   L2

Energy Efficient Code

Program sort circle
Version Original Final Original Final

Current (mA) 525.7 486.6 530.2 514.8
Ex. Time (ms) 11.02 7.07 7.18 4.93
Energy (10-6J) 19.12 11.35 12.56 8.37
Saving 40.60% 33.40%

Software power optimization: Example

heapsort example

src.: [Tiwari]
A. Raghunathan, NEC
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Overview

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation 
phase
 Instruction scheduling
 Compiler-driven DVS
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A detailed instruction-level power model

(src:[Steinke])

CPU-intern CPU-extern

- distinction between instruction 
dependency and data dependency
a) instruction-dependent cost inside 
the CPU
b) data-dependent cost inside the 
CPU
c) also considered but not discussed 
here: power extern to the CPU
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A detailed instruction-level power model (cont’d)

Instruction-dependent costs 
inside the CPU depend on:
- the internal buses carrying
the immediate value Imm
- the register numbers Reg, 
values kept within the 
registers RegVal
- and the instruction address 
IAddr.

ECPU_instr

(src:[Steinke])
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A detailed instruction-level power model (cont’d)

ECPU_data

(src:[Steinke])

Data-dependent costs inside the CPU for n data accesses depend on 
the data address DAddr, the Data itself and on the direction dir 
(read/write)
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A detailed instruction-level power model (cont’d)

● Results and parameters

-parameters of ARM7TDMI energy model

(src:[Steinke])

CPU current depending on number of 1's on data bus
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Overview

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation 
phase
 Instruction scheduling
 Compiler-driven DVS
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Low-power compilers

● Use instruction-level energy costs to guide code 
generation

● Minimize memory accesses

– Utilize registers effectively

– Reduce context saving

● Processor-specific optimizations

– dual memory loads, instruction packing

● Optimize instruction scheduling to reduce activity in 
specific parts of the system

– internal instruction-bus, processor-memory bus, instruction register and 
register decoder

(src.: A. Raghunathan, NEC)
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Instruction scheduling for low power

● Traditional instruction scheduling strategies

– Reordering instructions in order to

● avoid pipeline stalls
● improve resource (register file, etc.) usage
● increase instruction level parallelism (ILP)
● ...

– main goal: increase performance

● Traditional steps for instruction scheduling

1) partition program into regions or basic blocks

2) build a control dependency graph (CDG) and data dependency graph

3) schedule instructions within resource constraints
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Instruction scheduling

1( )j jD I I 

 Traditional:

- number of pipeline stalls between instruction I
j
 und I

j+1
 

Goal: minimize the number of all pipeline stalls PS within a basic block or region:

 Idea:
 Minimize switching those activities that depend on the sequence of 

instructions i.e. context sensitive switching
Examples: loading instructions in registers, using same or different 

operands, …
Switching activities may be measured by gate-level simulation running 

an instruction of a sequence of instructions on an RTL model of the 
processor architecture

 Idea: use the profiled switching activities as a cost function for 
instruction scheduling through re-ordering

Assumption: there is leeway in data and control dependency graph 
that allows re-ordering

Re-ordering may cost performance => prefer those re-orderings 
that incur no or little penalty for performance 

(src: Despain)PS=∑ D (I j , I j+1) , j=0,…, n−1
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Instruction Scheduling
- “Cold Scheduling” (Despain et al.) -

1

1

1 1

( , )

( , ), 0,..., 1

1
cos ( ... )

j j

j j

k k

S I I

BS S I I j n

t w BS w BS
k



  

    

�

-Switching activity (# of transistor switches) in the processor
 when instruction I_j+1 is executed right after I_j 

-Switching activity in a basic block

- cost function (k - # of basic blocks; 
w_i weight function takes into 
consideration dynamic execution 
frequency (profiling)

- Problem:
- typically, instruction scheduling and register allocation are
  performed before assembly code using symbolic forms
- It may be difficult to obtain bit switching information
  from symbolic representation

a) jump/branch targets may not be known before scheduling and register allocation
b) sizes of basic blocks may change during scheduling and register allocation
c) binary representation of  indexes to symbol table may not be available

 Phase problem of instruction scheduling and assembly
-If scheduling precedes assembly => may reduce potential of reducing bit switches
-If assembly precedes scheduling => flexibility of scheduling is limited

=> One solution: need to estimate binary representation of an instruction

BS=∑ S( I j , I j+1), j=0,…, n−1
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Instruction Scheduling
- “Cold Scheduling” (cont’d) -

shown:
- dependency graph and 
three schedules of a code 
sequences
- schedule info shows 
pipeline stalls
- schedule has been done 
without low power 
scheduling

- for each schedule, the 
normalized switching 
activity has been 
calculated
-Schedule I: is 1
-Schedule II is 1.05 (i.e. 
plus 5%)
-Schedule III is 1.45 
(plus 45%)

1BS  1.45BS 1.05BS 

1BS 

Conclusion: no clear correlation between low power (i.e. low 
BS) and high performance (i.e. few pipeline stalls) => there is 
hope that often energy/power savings can be achieved without 
performance loss! 

(src:Despain)
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Instruction Scheduling
- “Cold Scheduling” (cont’d) -

(src: Despain)

Energy savings

Performance
penalty
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Complexity and design space when
considering instruction sequences

● Q: Assume n instructions. How many instruction sequences?

● A: (n-1)! / 2

● Ex: 11 instructions (a medium-sized basic block) => ~16Mio sequences 
Each sequences can potentially have a different power consumption

● In practice: it is less since there are precedence constraints

precedence constraints among
instructions 1, 2, 3, 4, 5, 6



ces.itec.kit.edu26Volker Wenzel

An efficient approach to the
instruction scheduling problem

power dissipation table:
When an instruction in 
leftmost column is 
followed by instruction
in top row, then the given 
power consumption 
applies

control dependency 
graph:
Gives dependency 
constraints
Ex 1: before ‘4’, ’2','1’ 
needs to execute;
Ex 2: ‘1’, ‘2’, ‘3’ can 
be executed in any 
order

Weighted strongly connected graph:
Contains all edges of CDG plus: edges between any two 
nodes where precedence is not important (like 1<->2, 1<-
>3, 2<->3 etc.). This may be one or two edges subject to 
whether costs are different. Each weight gives power cost 
for repeated execution of the two connected instructions

Minimum Spanning 
Tree (MST)

Using Simulated Annealing 
for finding Hamiltonian Path 
=>that is the energy efficient 
instruction sequence

(src: chatterjee)
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An efficient approach to the
instruction scheduling problem (cont’d)

● Problem can be identified as the TSP problem => cannot be solved in polynomial time. In fact, 
it is NP-hard => needs a heuristic like, for example, Simulated Annealing

● Some details on MST (Minimum Spanning Tree) and TSP with Simulated Annealing

1) Computing the minimum cost spanning 
tree with Prim’s Algorithm (greedy)
Ex: when starting with vertex a, edges are 
chosen in the order ab, af, ac, cd, dg, de 

2) Computing MST is a constructive 
method to find an initial path. MST can 
be converted to a path using 
Christofide’s Algorithm, for example.

3) The initial path is improved using 
Simulated Annealing and 2-optimal 
mechanisms: 
-non-adjacent pair of edges are selected 
and deleted => 2 paths
- recombine 2 path to 1 path (is unique) 
according to optimization algorithm 
(accept or reject the “move”) (src: chatterjee)
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An efficient approach to the
instruction scheduling problem (cont’d)

● Power saving results

(src: [chatterjee])

Power break down: Instruction Fetch, Id: Instruction 
Decode, Exe: Execution, Mem: Memory access, Wb: 
Wright back, RF: Register file, PR: Pipeline Register, 
FU: Functional Units, DP: Other Data Paths

Scheduling Example for one BB of FIR Source
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Is optimizing SW for low power
equal to increasing its performance?

● Traditionally ‘yes’ because the following optimizations lead to both power/energy reduction and 
performance increase
 Common sub-expression elimination
 Dead code elimination
 Memory hierarchy optimizations: loop tiling, keeping data on-chip instead of off-chip, …

● BUT: there are fundamental differences in metrics/models used for low power/energy and 
performance
  Ex 1: critical path is often used for performance constraints. When modifying the off-critical 

path in that case, performance is generally not affected; may instead lead to a decrease of the 
critical path;

power/energy, on the other hand, are affected! Note any activity on or off the critical path will 
contribute to power/energy consumption.

  Ex 2: moving loop invariant code:
 Assumption: - code is loop invariant;

 Case 1: on scalar machine performance optimization will move

     code out of the loop
 Case 2: on a VLIW leaving code in may increase performance

      if there are empty slots. Then, critical path may be reduced.

 But: power goes up since ten times executed

 Ex 3: speculative computation

(s
rc

: [
K

er
m

er
])
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Overview

● Software power analysis/measurement

● Software power estimation models

● Optimizing software for low power through compilation 
phase
 Instruction scheduling
 Compiler-driven DVS
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Some DVS basics

● DVS – Dynamic Voltage Scaling (the most effective method for power 
savings due to quadratic relationship between power and supply 
voltage
 DVS comes at the cost of performance degradation. Idea: deploy DVS 

such that it does not incur a penalty
 An effective DVS strategy: 

determine intelligently when to adjust the voltage setting (i.e. find the 
best ‘scaling points’)

Where to adjust to i.e. which voltage setting to choose (i.e. ‘scaling 
factors’)

 Overhead:
Switching to and from new voltage setting costs time and energy (=> 

may reduce or eliminate potential savings)
 Hundreds of micro-seconds i.e. tens of thousands of instructions!
    (i.e. not even cache misses may be used to perform the transition)

 Considered here: intra-task DVS: i.e. scaling points may be in the middle 
of the task execution (in contrast to inter-task DVS)
Sub-categories:

 1) interval-based DVS: fixed-length time intervals rely solely on state of the 
system and trace history. Scaling points determined online or offline

 2) checkpoint-based DVS: scaling points are determined offline, scaling 
factors are determined online. Scaling points are placed at selected 
branches to exploit the slacks due to run-time variations
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Compiler-directed DVS

(src: [Kremer03])

Compiler-directed DVS problem:
Given a program P, find a region R and a 
frequency f such that, if region R is executed at
frequency f and the rest of the program P − R is 
executed at the peak frequency f

max
, the total 

execution time plus the switching overhead T
trans

 

·2·N(R) is increased no more than r percent of 
the original execution time T(P, f

max
), while the 

total energy usage is minimized.

Compiler-directed DVS problem:
Given a program P, find a region R and a 
frequency f such that, if region R is executed at
frequency f and the rest of the program P − R is 
executed at the peak frequency f

max
, the total 

execution time plus the switching overhead T
trans

 

·2·N(R) is increased no more than r percent of 
the original execution time T(P, f

max
), while the 

total energy usage is minimized.

with

T(R, f) -   total execution time of 
region R running at
frequency f

N(R) -  # of times region
R is executed,

P
f
  -   power consumption of the

system at frequency f

T
trans

, P
trans

  -    single switching 

overhead in terms of 
performance, power, respectively.

r  -  specified by user

-> specify input behavior (kept in table)

-> modeling underlying machine

(src: [Kermer03])
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Compiler-directed
DVS (cont’d)

Additional constraint:
It needs to be made sure that region R 
is sufficiently large such that exec time 
is larger than a DVS call: ρ  -  compiler-directive

Steps of compiler-directed DVS:
1)   instrumenting: the input program at selected 
      program locations
2)   profiling: the instrumented code is  executed,
      filling a subset of entries in tables T(R, f) and
      N(R)
3)   rest of table entries are derived (using call
      graphs etc.); based on inter-procedural
      analysis -> analysis is faster than profiling
4)   the minimization problem is solved by
      enumerating all possible regions and 
      frequencies.
5)   the corresponding DVS system calls are
      inserted at the boundaries of the selected
      region.

(src: [Kremer03])
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Compiler-directed
DVS (cont’d)

- assumptions: - only two CPU frequencies f_max, f_min
                        - C call sites
                        - L loop nest
- First all N(R

i
), T(R

i
, f) are profiled for the basic regions

- Combined regions: one entry point, one exit point => all top level 
statements are executed same # of times
- example for combined regions: if(L4, L5), seq(C2, C3)
-not allowed: seq(C1, C2), seq(C3, L4), …
- C1, C3 are the only call points of function foo
  =>                                                               (C3 accordingly)

Example

Profiled dataControl flow between
basic regions

Remarks:
The profile-driven approach gives
results that are not portable but it
captures properties that may not be
captured using a compile-time 
prediction model

(src: [Kremer03])



ces.itec.kit.edu35Volker Wenzel

Compiler-directed
DVS (cont’d)

● Results and experimental setup

Compilation time [s]

input parameter for
 DVS algorithm

Experimental setup

 Results:
 Power savings: 0%-28%
 Performance penalty: 0%-4.7%

(src: [Kremer03])
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Conclusion

● Software power estimation is possible and necessary
 It represents a high level of abstraction and therefore it is faster than 

estimating power consumption of the underlying hardware circuitry

● Compiler may include optimization for low power
 Instruction scheduling
 Intra-procedural DVS

● Optimizing for low power and high performance are two 
distinct tasks!
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Powertop Demo

(src.:[Heise])
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Powertop Demo

● open source power analysis tool

● diagnose issues related to 

– power consumption

– power management

● interactive mode for experimentation

● „tuning“ possible from within powertop

(src.: [Powertop])
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